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1

How does supply uncertainty affect the structure of supply chain networks? To answer this question we 2

consider a setting where retailers and suppliers must establish a costly relationship with each other prior to 3

engaging in trade. Suppliers, with uncertain yield, announce wholesale prices, while retailers must decide 4

which suppliers to link to based on their wholesale prices. Subsequently, retailers compete with each other in 5

Cournot fashion to sell the acquired supply to consumers. We find that in equilibrium retailers concentrate 6

their links among too few suppliers, i.e., there is insufficient diversification of the supply base. We find that 7

either reduction of supply variance or increase of mean supply, increases a supplier’s profit. However, these 8

two ways of improving service have qualitatively different effects on welfare: improvement of the expected 9

supply by a supplier makes everyone better off, whereas improvement of supply variance lowers consumer 10

surplus. 11

Keywords: supply chain network; strategic network formation; yield uncertainty 12

1 INTRODUCTION 13

Semiconductors, food processing, biopharmaceuticals, and energy are important industries that 14

rely on suppliers subject to yield uncertainty. The degree of uncertainty can be large. Bohn and 15

Terwiesch [7], for example, suggest that disk drive manufacturer Seagate experiences production 16

yields as low as 50%. A popular recommendation for dealing with uncertainty on the part of 17

suppliers is to diversify the supplier base, see Cachon and Terwiesch [11], Chopra and Meindl 18

[12]. It has been widely adopted [24, 25]. However, signing up a new supplier and the subsequent 19

maintenance costs for that relationship can be costly—according to Cormican and Cunningham 20

[13], it takes, on average, six months to a year to qualify a new supplier. 21

In this paper we examine the networks of buyer-supplier relationships that emerge in the presence 22

of yield uncertainty, costly link formation, and competition. We consider a supply chain with many 23

retailers (buyers) selling perfectly substitutable products that use a common critical component. 24

The retailers compete with each other à la Cournot, so the market price for the retailers’ output is 25

determined by the total quantity of product present in the market. The retailers source a common 26

input from many unreliable suppliers, and thus face supply uncertainty. The suppliers compete on 27

price. 28

Suppliers move first and set prices simultaneously. Retailers, then, simultaneously choose which 29

subset of suppliers to link to. Each link incurs a cost borne by the retailer. The random output 30

of each supplier is realized and shared equally [8, 23] between all buyers that link to it. Random 31

supply should be interpreted as arising from variability in the yield of the production process. The 32

retailers, in turn, compete downstream in Cournot fashion. 33

Retailers, in our model face a number of trade-offs. With access to more supply sources, a retailer 34

secures better terms of trade and is insulated against the supply uncertainty facing any one supplier. 35

However, given the cost of establishing a link, there is a savings from limiting the number of 36

suppliers. A retailer must also choose which supplier to link to, making our model qualitatively 37

different from such models as Mankiw and Whinston [22], where firms decide only upon entry 38

and not their “position” within the market. On the one hand, a supplier linked to many other 39
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retailers is unattractive because its output must be shared with other, competing, retailers. Yet, by 40

coordinating on a few suppliers, retailers can benefit from higher downstream prices in the event 41

that the supplier comes up short [4]. 42

We find that the resulting pure strategy Nash equilibria are inefficient in the sense of not 43

maximizing expected welfare, where welfare is the sum of consumer surplus, retailers’ profits, and 44

suppliers’ profits. As there can be multiple Nash equilibria, we focus on the one that minimizes the 45

suppliers revenues. This equilibrium employs fewer suppliers than the efficient outcome. While each 46

retailer connects with multiple suppliers, they concentrate their links on too few suppliers relative 47

to the efficient number. This tendency to agglomeration is sometimes attributed to economies 48

of scale which are absent in our model. Rather, it is the downstream competition that drives 49

agglomeration in our model. Reducing the supplier base allows the retailers to earn higher prices 50

than they otherwise would. 51

It is generally thought that an increase in the expected supply or a decrease in its variance 52

should be beneficial to all. This is certainly true if a supplier increases their expected supply relative 53

to other suppliers. Their profitability increases. Consumer surplus also increases, and retailer 54

profits—if we ignore indivisibilities—are unchanged. If a supplier reduces its variance relative to 55

the other suppliers, this strictly increases their profit, but this gain comes entirely at the expense 56

of consumers. Consumer surplus declines and retailer profits remain constant. Overall welfare 57

increases. Hence, an increase in expected supply by one supplier is unambiguously an improvement, 58

while a reduction in variance is not. 59

In the next section of this paper we summarize the relevant prior work highlighting the main 60

differences. The subsequent section introduces the model. The following sections provide an 61

analysis of various parts of the model. 62

2 PRIORWORK 63

This paper occupies a position in two distinct literatures. The first is on yield uncertainty in 64

production. Earlier papers focused on strategies that a single firm could employ to mitigate the 65

effect of yield uncertainty holding competition fixed—see, for example, Anupindi and Akella [3], 66

Gerchak and Parlar [18], and Yano and Lee [27]. We, in contrast, study the interaction of competing 67

firms. 68

Recently, attention has turned to the interaction between prices and yield uncertainty, with a few 69

representative works’ being Deo and Corbett [15], Fang and Shou [17], Demirel et al. [14], and Tang 70

and Kouvelis [26]. In these papers the competing firms themselves are subject to yield uncertainty, 71

which corresponds to a single-tier supply chain, while our paper involves a two-tier supply chain. 72

Thus these paper are unable to say anything about the extent of supplier diversification we might 73

observe. 74

Such works as Ang et al. [2], Babich et al. [4], Bimpikis et al. [5, 6] that examine multi-tier supply 75

chains, fix the pattern of links exogenously. An exception is Demirel et al. [14] that discusses 76

network formation, yet, with downstream prices being fixed. Our paper has both endogenous 77

network and price formation. 78

The second thread of related literature deals with network formation between buyers and capacity- 79

constrained sellers. In the seminal paper Kranton and Minehart [21], costly network formation 80

occurs before prices are set. Only linked buyers and sellers can trade with each other. Once the 81

network is formed, seller-specific prices are determined so as to clear the market. Buyers in 82

this setting only compete for suppliers which can be interpreted as buyers choosing between 83

differentiated sellers for personal consumption only. There is no uncertainty. In our model, network 84

formation occurs after prices are set and buyers (retailers) compete not just for suppliers, but 85

also in a downstream market. Finally, we incorporate uncertainty in yield. The same authors’ 86
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Fig. 1. Two-tier supply chain network, with retailers D and suppliers S. The consumer tier is implicitly present.

related work Kranton and Minehart [20] considers demand uncertainty, whereas our focus is on 87

supply uncertainty. Another related work on supply chain network formation is Elliott, Golub, and 88

Leduc [16], where the authors study shock propagation in supply chains, yet, focus on a continuum 89

of firms and use pricing mechanisms different from ours. 90

3 PRELIMINARIES 91

A supply chain (D,S, 𝑔), illustrated in Fig. 1, consists of 𝑛 retailers D, 𝑚 suppliers S, and links 92

𝑔 ∈ ×𝑛
1
(2S) between them. Retailers and suppliers are strategic, while consumers are price-takers. 93

Suppliers manufacture the product at zero marginal cost and sell it to retailers. Each supplier is free 94

to set any price. Based on the prices set, retailers choose which suppliers to deal with and purchase 95

all their output at the price set. This is an example of a price only contract [9]. The retailers in turn 96

sell the output to consumers at a price determined in Cournot fashion. 97

The supply 𝑆 𝑗 of supplier 𝑗 is a random variable, with mean E[𝑆 𝑗 ] = 𝜇 𝑗 and variance Var[𝑆 𝑗 ] = σ2

𝑗 , 98

whose value lies in [0, 𝑆𝑚𝑎𝑥 ], 𝑆𝑚𝑎𝑥 > 0. If the realized supply is 𝑆 , the realized yield will be
𝑆

𝑆𝑚𝑎𝑥 . 99

Unlike in Deo and Corbett [15] and Fang and Shou [17], where 𝑆max
is a choice, in our model this 100

is fixed exogenously. One can think of 𝑆𝑚𝑎𝑥 as a capacity choice that over a short time horizon is 101

inflexible. In our model suppliers only choose a price for their realized output. 102

With the exception of Sec. 6 and 7—we assume identically distributed supplies, with mean E[𝑆 𝑗 ] = 103

𝜇 and variance Var[𝑆 𝑗 ] = σ2
. Supplies 𝑆 𝑗 of different suppliers are assumed to be independent. The 104

maximal total amount of supply the suppliers can produce is Δ =𝑚𝑆𝑚𝑎𝑥 . 105

The inverse demand curve in the market downstream of the retailers is 𝑝 = Δ − 𝑞, where 𝑞 is the 106

total output of all the retailers, and 𝑝 is the market price. 107

Supplier 𝑗 sets price of𝑤 𝑗 per unit of product, and the price can vary across suppliers, assuming 108

that the latter compete for retailers on price. Thus, wholesale prices are fixed in advance and are 109

not affected by suppliers’ yield realization. (While fixed wholesale prices are common—see, for 110

example, Cachon and Lariviere [10, Sec. 2]—there are alternatives, such as yield-dependent prices 111

in spot market-like environments—see, for example, Bimpikis et al. [5] and Amelkin and Vohra [1]). 112

Each retailer 𝑖 chooses links 𝑔𝑖 ⊆ S to suppliers—incurring a constant cost of 𝑐 per link—thereby, 113

forming the supply chain network 𝑔 = (𝑔1, . . . , 𝑔𝑛). In that network, suppliers with at least one link 114

are termed active and are denoted by S+ (𝑔) ⊆ S, while the suppliers having no links are termed 115

vacant and denoted by S0 (𝑔) = S S+ (𝑔). 116

Z+ denotes the set of non-negative integers, ⌊𝑥⌋ ∈ Z is the integer closest to and no larger than 𝑥 117

(floor), {𝑥} = 𝑥 − ⌊𝑥⌋ is the fractional part of 𝑥 , 𝑁 (𝑘) ⊆ {1, 2, . . . } (or 𝑁 (𝑘,𝑔)) is the neighborhood 118

of node 𝑘 (in network 𝑔), and 𝑑 (𝑘) = |𝑁 (𝑘) | (or 𝑑 (𝑘,𝑔)) is the degree of node 𝑘 (in network 𝑔). We 119

summarize our notation in Table 1. 120
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Table 1. Notation summary.

⌊𝑥⌋ integer closest to and no larger than 𝑥 (floor)

{𝑥} 𝑥 − ⌊𝑥⌋
D = {1, . . . , 𝑛} retailers, 𝑛 ≫ 1

S = {1, . . . ,𝑚} suppliers,𝑚 ≫ 1

S+ (𝑔) ⊆ S active (linked) suppliers in network 𝑔

S0 (𝑔) S S+ (𝑔) – vacant suppliers

𝐾 = 𝐾 (𝑔) |S+ (𝑔) | – number of active suppliers

𝑆 𝑗 random supply of supplier 𝑗

E[𝑆 𝑗 ] = 𝜇 𝑗 expected supply of supplier 𝑗

Var[𝑆 𝑗 ] = σ2
𝑗

supply variance of supplier 𝑗

Δ maximal total supply

𝑐 cost of linking to a supplier

𝑤 𝑗 price supplier 𝑗 charges per unit of supply

𝑔𝑖 ⊆ S pure strategy of retailer 𝑖

𝑔−𝑖 (𝑔1, . . . , 𝑔𝑖−1, 𝑔𝑖+1, . . . , 𝑔𝑛)
𝑔 = (𝑔𝑖 , 𝑔−𝑖 ) pure strategy profile / network

𝑁 (𝑘) ⊆ {1, 2, . . . } neighborhood of node 𝑘

𝑁 (𝑘,𝑔) neighborhood of node 𝑘 in network 𝑔

𝑑 (𝑘) = |𝑁 (𝑘) | degree of node 𝑘

4 NETWORK FORMATIONWITH FIXED PRICES 121

In this section, we will outline the model of supply chain network formation with identical—w.r.t. 122

supply distributions and linking costs—suppliers, where supplier wholesale prices (𝑤1, . . . ,𝑤𝑚) are 123

assumed to be fixed and potentially different from each other. In the next section, we extend this 124

model to the case where suppliers strategically select prices. 125

4.1 Network Formation Game 126

Given wholesale prices, (𝑤1, . . . ,𝑤𝑚), we write down the payoff of retailer 𝑖 . 127

Definition 4.1 (Payoff of a Retailer). At supply prices 𝑤 = (𝑤1, . . . ,𝑤𝑚) per unit of supply, the
expected payoff of retailer 𝑖 ∈ D is:

𝑢𝑖 (𝑔,𝑤) =
∑︁
𝑗∈𝑁 (𝑖 )

((
Δ −

∑︁
𝑘∈S+ (𝑔)

𝑆𝑘 −𝑤 𝑗

) 𝑆 𝑗

𝑑 ( 𝑗) − 𝑐
)
, (1)

where 𝑆 𝑗 ∼ Dist( [0, 𝑆𝑚𝑎𝑥 ]). 128

In Definition 4.1, prices𝑤 are announced by suppliers in advance; additionally, variable 𝑔 in the 129

expressions of type 𝑁 (𝑖, 𝑔) and 𝑑 ( 𝑗, 𝑔) is omitted for readability. 130

The rationale for the retailer payoff function (1) is as follows. If retailer 𝑖 is linked to supplier 131

𝑗 , then it receives 𝑆 𝑗/𝑑 ( 𝑗) amount of supply from 𝑗—similarly to each out of 𝑑 ( 𝑗) retailers linked 132

to 𝑗 . This supply distribution scheme assumes that, regardless of the number of links connected 133

to a supplier, all its supply is realized, and that suppliers are non-discriminating in that each 134

supplier distributes its entire supply uniformly across the retailers linked to it. See Rong et al. [23] 135

and Cachon and Lariviere [8] for a justification. 136

The 𝑆 𝑗/𝑑 ( 𝑗) units of supply from supplier 𝑗 will earn retailer 𝑖 a marginal profit of (Δ − 137∑
𝑘∈S+ (𝑔) 𝑆𝑘 −𝑤 𝑗 ) per unit—the retailer purchases product upstream from supplier 𝑗 at unit price 138
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𝑤 𝑗 , and sells it downstream at the market price of (Δ−∑
𝑘∈S+ (𝑔) 𝑆𝑘 ) per unit. Additionally, a retailer 139

incurs a constant cost 𝑐 for maintaining a link to supplier 𝑗 . 140

Notice that the only way different summands in (1)—corresponding to the marginal payoffs of 141

linking to the respective suppliers—can affect each other is via potentially altering the number of 142

active suppliers 𝐾 (𝑔) = |S+ (𝑔) | = |{ 𝑗 ∈ S | 𝑑 ( 𝑗, 𝑔) > 0}|. 143

We also note that the payoff (1) does not incorporate any explicit product under-delivery penalty, 144

as such penalties—while can be included in a contract—are complex to implement and are rarely 145

used [2, 19]. 146

Lemma 4.2 (Expected Payoff of a Retailer [Proof ]). The expected payoff of retailer 𝑖 ∈ D is

E[𝑢𝑖 (𝑔,𝑤)] =
∑︁
𝑗∈𝑁 (𝑖 )

(𝑣 (𝐾) − 𝜇𝑤 𝑗

𝑑 ( 𝑗) − 𝑐
)
, (2)

where 𝐾 = 𝐾 (𝑔) = |S+ (𝑔) | = |{ 𝑗 ∈ S | 𝑑 ( 𝑗, 𝑔) > 0}| is the number of active (linked) suppliers, and

𝑣 (𝐾) = 𝜇 (Δ − 𝜇𝐾) − σ2
(3)

is the “value” of a supplier. 147

In what follows, we define a one-shot network formation game with given wholesale prices 148

(𝑤1, . . . ,𝑤𝑚). 149

Definition 4.3 (Network Formation Game with fixed Wholesale Prices). This is a one-shot game, 150

where wholesale prices (𝑤1, . . . ,𝑤𝑚) are assumed fixed, and retailers strategically form links to 151

suppliers, maximizing expected payoff E[𝑢𝑖 (𝑔,𝑤)] over 𝑔𝑖 . 152

In the above defined game, we are interested in pure strategy Nash equilibria, defined in a 153

standard manner as follows. 154

Definition 4.4 (Pure Strategy Nash Equilibrium Networks). A network 𝑔∗ is said to be a pure
strategy Nash equilibrium of the network formation game with fixed wholesale prices if for all

retailers 𝑖 ∈ D and any linking pattern 𝑔𝑖 being a unilateral deviation from 𝑔∗, the following holds

E[𝑢𝑖 (𝑔𝑖 , 𝑔∗−𝑖 )] ≤ E[𝑢𝑖 (𝑔∗𝑖 , 𝑔∗−𝑖 )] .
155

First, notice that the best-case marginal payoff from linking to supplier 𝑗—deduced from equa- 156

tion (2)—corresponds to the case where this is the only active supplier in the network (so 𝐾 = 1), 157

and the link being created is the only link present in the network (so 𝑑 ( 𝑗) = 1). The corresponding 158

marginal payoff of a retailer is 𝑣 (1) − 𝜇𝑤 𝑗 − 𝑐 . It is reasonable to assume that for every supplier, this 159

best-case marginal payoff is non-negative, or, alternatively, every supplier has a chance of being 160

linked to. In order to assure that the above expression is non-negative, we make the following 161

assumption about the costs involved in a retailer’s payoff. 162

Assumption 1 (Upper-Bounded Wholesale Prices and Linking Costs). We assume that the
suppliers’ prices are reasonably small, so that every supplier can potentially be linked to in the best
case:

𝑤 𝑗 ≤
𝑣 (1) − 𝑐

𝜇
= Δ − 𝜇 − σ2 + 𝑐

𝜇
.

Furthermore, to make sure that the upper bound in the expression above is non-negative (as prices𝑤 𝑗

cannot be negative), we assume that the linking cost 𝑐 is also bounded

0 < 𝑐 ≤ 𝑣 (1) = 𝜇 (Δ − 𝜇) − σ2.
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163

Finally, we will make another assumption about the size of our system. 164

Assumption 2 (Large Supply Chain). We will assume that a supply chain is large in that both 165

the number 𝑛 of retailers and the number𝑚 of suppliers are sufficiently large (yet, finite). 166

Assumption 2 will allow us to clearly see the effect of supply distribution parameters as well as 167

costs upon the formed prices and networks rather than the effect of those mixed together with the 168

effect of agent scarcity. 169

4.2 Nash Equilibrium Analysis 170

Algorithm 1 below greedily constructs an equilibrium, which is proven in the following Lemma 4.5. 171

ALGORITHM 1: Greedy construction of a pure strategy Nash equilibrium. Below, 𝐾 = 𝐾 (𝑔∗) = |S+ (𝑔∗) |
is the number of active suppliers in 𝑔∗, and 𝑣 (𝐾) = 𝜇 (Δ − 𝜇𝐾) − σ2.

Input: Δ, 𝜇, σ, 𝑐 ,𝑤1, . . . ,𝑤𝑚

Output: 𝑔∗

1: 𝑔∗ ← ∅, 𝑖 ← 1

2: for 𝑗 ∈ ⟨1, . . . ,𝑚⟩ ordered↗ by𝑤 𝑗 do
3: if 𝑣 (𝐾 (𝑔∗) + 1) − 𝜇𝑤 𝑗 − 𝑐 < 0 then
4: break
5: 𝑔∗ ← 𝑔∗ + (𝑖, 𝑗)
6: 𝑖 ← 𝑖 + 1
7: for 𝑗 ∈ S+ (𝑔∗) do
8: while (𝑣 (𝐾) − 𝜇𝑤 𝑗 )/(𝑑 ( 𝑗, 𝑔∗) + 1) − 𝑐 ≥ 0 do
9: 𝑔∗ ← 𝑔∗ + (𝑖, 𝑗)
10: 𝑖 ← 𝑖 + 1
11: return 𝑔∗

Lemma 4.5 (Greedy Construction of Eqilibrium). For a supply chain network formation 172

game with fixed wholesale prices𝑤 and a sufficiently large number 𝑛 of retailers, Algorithm 1 always 173

terminates and outputs a pure strategy Nash equilibrium of the game. 174

Proof. Proof of Lemma 4.5: Algorithm 1 consists of two parts corresponding to two for-loops: 175

in the first part, it activates as many suppliers as possible, creating links from different retailers; 176

in the second part, all these active suppliers receive extra links until linking to them stops being 177

profitable. 178

Let us, first, notice that the algorithm always terminates in 𝑂 (𝑛𝑚) steps. The first for-loop 179

executes no more than𝑚 times. The while-loop (lines 8-10) executes at most 𝑛 times, as at every 180

iteration the chosen supplier 𝑗 may be linked to some retailer 𝑖 , and, eventually, linking to 𝑗 will 181

get too expensive (due to the fact that 𝑣 (𝐾) is strictly monotonically decreasing). Notice that, due 182

to the assumption about the number 𝑛 of suppliers being sufficiently large, we are guaranteed to 183

never run out of vacant retailers to link to suppliers. Thus, the second for-loop (lines 7-10) executes 184

at most 𝑛𝑚 times. Hence, the algorithm terminates in at most 𝑛𝑚 steps. 185

Now, we need to show that the output 𝑔∗ is a Nash equilibrium. In 𝑔∗, only the following types of 186

unilateral deviations are possible: (a) A retailer adds new links. (b) A retailer having a link drops it. 187
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(c) A retailer having a link drops it and adds new links. Deviations of type (a) are impossible (cannot 188

result in a higher expected payoff), as two for-loops ensure that creation of extra links cannot have 189

a non-negative marginal payoff. Deviations of type (b) are also impossible, as each retailer can 190

at most drop a single link, and that link—due to the if-statement inside the first for-loop—has a 191

non-negative marginal payoff. Finally, deviations of type (c) are also impossible, as, having dropped 192

the single link, a retailer can at best re-link to the same supplier, as all the other suppliers—both 193

active and vacant—are “saturated” in that linking to them provides a negative marginal payoff 194

increase—vacant suppliers are such due to the first for-loop, and the active suppliers are such due 195

to the second for-loop. Thus, 𝑔∗ is a pure strategy Nash equilibrium of the game. 196

The following is now immediate. 197

Theorem 4.6 (Eqilibrium Existence). For a supply chain network formation game with fixed𝑤 198

and a sufficiently large number 𝑛 of retailers, pure strategy Nash equilibrium always exists. 199

Algorithm 1 and the accompanying Lemma 4.5, also provide us with information about the active 200

suppliers at any equilibrium. 201

Theorem 4.7 (Active Suppliers at Eqilibrium). In a supply chain network formation game 202

with fixed wholesale prices𝑤 and a sufficiently large number 𝑛 of retailers, let 𝐾∗ be the number of 203

active suppliers in a pure strategy Nash equilibrium constructed by Algorithm 1. Then, in any pure 204

strategy Nash equilibrium 𝑔∗ of that game, the number of active suppliers is𝐾∗ if 𝑣 (𝐾∗) −𝜇𝑤𝐾∗ −𝑐 > 0, 205

and either 𝐾∗ or (𝐾∗ − 1) otherwise, where, as before, prices𝑤 𝑗 are listed in an ascending order. 206

Proof. Proof of Theorem 4.7: First, notice that the number 𝐾 of active suppliers at any equilib- 207

rium 𝑔∗ cannot be greater than 𝐾∗. If that was the case in 𝑔, then the marginal benefits of linking to 208

the cheapest 𝐾∗ active suppliers in 𝑔 would be no greater than those of linking to the cheapest 𝐾∗ 209

active suppliers in 𝑔∗, and—due to lines (3-4) of Algorithm 1 and 𝑣 (𝐾)’s being strictly monotonically 210

decreasing in 𝐾—linking to the remaining (𝐾 − 𝐾∗) suppliers would have a negative marginal 211

benefit. 212

Secondly, the number of active suppliers 𝐾 at any equilibrium also cannot be lower than 𝐾∗ 213

when 𝑣 (𝐾∗) − 𝜇𝑤𝐾∗ − 𝑐 > 0, and lower than (𝐾∗ − 1) otherwise, since, if that was the case, one of 214

the cheapest 𝐾∗ suppliers would have been vacant, and there would be a retailer having no links 215

(as 𝑛 is sufficiently large, such a retailer always exists) that would be willing to link to one of these 216

still vacant cheapest suppliers (due to the first for-loop of Algorithm 1). 217

Thus, the number of active suppliers at any equilibrium should be 𝐾∗ or (𝐾∗ − 1). 218

We now characterize pure strategy Nash equilibria of the game with fixed𝑤 . 219

Theorem 4.8 (Nash Eqilibrium Network Characterization [Proof ]). In a supply chain
network formation game with fixed𝑤1 ≤ · · · ≤ 𝑤𝑚 , and sufficiently many retailers and suppliers, a
pure strategy Nash equilibrium will have 𝐾 active suppliers, and their degrees are

𝑑 ( 𝑗) =
⌊𝑣 (𝐾) − 𝜇𝑤 𝑗

𝑐

⌋
where the value of 𝐾 is given in Theorem 4.7. 220

5 PRICE AND NETWORK FORMATIONWITH STRATEGIC SUPPLIERS 221

We now allow the suppliers to strategically choose prices, and, then, retailers will form links in 222

response. As before, we will be interested in pure strategy Nash equilibria of this two-stage game. 223
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Fig. 2. An example of a counterintuitive equilibrium network. Supply parameters are 𝜇 = 2, σ = 1, Δ = 18;
linking cost is 𝑐 = 1/2; supplier prices are (𝑤1,𝑤2,𝑤3, . . . ) = (12, 13, 13, . . . ). In this equilibrium with 𝐾 = 2

active suppliers, while the second and third suppliers are “saturated”, with𝑑 (2) = 𝑑 (3) = ⌊(𝑣 (𝐾)−𝜇𝑤2)/𝑐⌋ = 2,
the marginal benefit of linking to the first supplier is negative: it is −7/2 if a vacant retailer links to it; and it
is −3/2 if an active retailer changes one of its links (𝑖, 2) or (𝑖, 3) to (𝑖, 1).

5.1 Price and Network Formation Game 224

For a given price vector 𝑤 , there are many equilibrium networks. This is true at the very least 225

because for a given price vector𝑤 , links can be distributed almost arbitrarily among the retailers, 226

because an equilibrium is largely characterized by the number of active suppliers and each supplier’s 227

degree. In fact, the network formation game with fixed wholesale prices may possess counter- 228

intuitive equilibria, in which expensive suppliers are active, while the cheapest suppliers have no 229

links, as Fig. 2 demonstrates. We eliminate these equilibria with the following selection criterion. 230

Definition 5.1 (Equilibrium Selection). For a vector𝑤 ∈ R𝑚+ , let us define 𝜉 (𝑤) to be the subset of

pure strategy Nash equilibria—characterized in Theorem 4.8—in which the active suppliers have

the lowest prices

𝑔∗ ∈ 𝜉 (𝑤) → ∀𝑗 ∈ S0 (𝑔∗) : 𝑤 𝑗 ≥ max

ℓ∈S+ (𝑔∗ )
𝑤ℓ .

Assume that, from the point of view of a supplier, all equilibria in 𝜉 (𝑤) are equiprobable. 231

We, now, define the payoff of a supplier. 232

Definition 5.2 (Payoff of a Supplier). The payoff function of supplier 𝑗 is

𝑢 𝑗 (𝑤) = 𝑎 𝑗 (𝑤)𝑆 𝑗𝑤 𝑗 , (4)

where, if suppliers strategically choose prices𝑤 ,

𝑎 𝑗 (𝑤) = P[𝑑 ( 𝑗, 𝑔∗) > 0 | 𝑔∗ ∈ 𝜉 (𝑤)]
is the likelihood that supplier 𝑗 is active in an equilibrium network 𝑔∗ ∈ 𝜉 (𝑤) subsequently formed

by retailers in response to prices𝑤 = (𝑤 𝑗 ,𝑤− 𝑗 ) announced by suppliers; or, if the central planner

decides upon prices𝑤 ,

𝑎 𝑗 (𝑤) = 𝛿{𝑑 ( 𝑗, 𝑔) > 0},
where 𝑔 is the network chosen by the central planner, and 𝛿{·} is Kronecker’s delta. 233

Supplier 𝑗 ’s payoff is computed under the assumption that the supplier sells its full supply 𝑆 𝑗 at 234

price 𝑤 𝑗 as long as it has at least one link in the network formed by retailers. The latter may or 235

may not happen, depending on which equilibria retailers arrive at under𝑤 , or which network is 236

chosen by the central planner. 237

Lemma 5.3 (Expected Payoff of a Supplier).

E[𝑢 𝑗 (𝑤)] = 𝑎 𝑗 (𝑤)𝜇𝑤 𝑗 , (5)
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where 𝑎 𝑗 (𝑤) is the likelihood of supplier 𝑗 ’s being active in an equilibrium network, as per Definition 5.2. 238

239

Proof. Proof of Lemma 5.3: Trivially follows from equation (4) in Definition 5.2. 240

Definition 5.4 (Supply Chain Formation Game). A supply chain network formation game is a 241

two-stage game, where, at the first stage, suppliers announce prices𝑤 , maximizing their expected 242

payoffs (5); and at the second stage, retailers play the network formation game with fixed prices𝑤 , 243

as per Definition 4.3. A pure strategy Nash equilibrium price vector𝑤∗ is a vector of prices immune 244

to unilateral price deviations w.r.t. expected payoffs (5). A pure strategy Nash equilibrium of the 245

two-stage game is any pair (𝑤∗, 𝑔∗), where 𝑔∗ ∈ 𝜉 (𝑤∗), and 𝜉 (𝑤∗) is characterized in Definition 5.1. 246

247

5.2 Central Planner 248

We define social welfare for the two-stage supply chain formation game. 249

Definition 5.5 (SocialWelfare). The two-stage supply chain formation game, given inDefinition 5.4,

has the following social welfare

𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒 (𝑔,𝑤) =
∑︁
𝑖∈D

𝑢𝑖 (𝑔,𝑤) +
∑︁
𝑗∈S

𝑢 𝑗 (𝑔,𝑤) +
∫ 𝑇 (𝑆 )

0

(Δ − 𝑥) d𝑥 −
∑︁

𝑘∈S+ (𝑔)
𝑆𝑘 (Δ −𝑇 (𝑆)), (6)

where 𝑇 (𝑆) = 𝑇 (𝑆1, . . . , 𝑆𝑚) =
∑
𝑘∈S+ (𝑔) 𝑆𝑘 is the total supply of all active suppliers. 250

In (6), the first two summands correspond to the welfare of retailers and suppliers, respectively, 251

and the last two summands describe consumer surplus. The latter reflects the benefit the consumers 252

enjoy due to their being able to purchase a unit of product (supply) at the market price (Δ −𝑇 (𝑆)) 253

rather than at the maximum price Δ, and corresponds to the area under the inverse demand curve 254

above the market price. 255

Lemma 5.6 (Expected Social Welfare). The expected social welfare in a two-stage supply chain
formation game is as follows

E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] = 𝜇𝐾
(
Δ − 𝜇𝐾

2

)
− 𝐾 σ2

2

− 𝑐 |𝑔|, (7)

where 𝐾 = 𝐾 (𝑔) = |S+ (𝑔) | is the number of active suppliers, and |𝑔| is the number of links in 𝑔. 256

Proof. Proof of Lemma 5.6: As per (6), expected social welfare consists of three components. 257

The first component is the aggregate payoff of retailers:

E
[∑︁
𝑖∈D

𝑢𝑖 (𝑔,𝑤)
]
=

∑︁
𝑖∈D

∑︁
𝑗∈𝑁 (𝑖 )

(
𝑣 (𝐾) − 𝜇𝑤 𝑗

𝑑 ( 𝑗) − 𝑐
)
=

∑︁
𝑗∈S+ (𝑔)

(
𝑣 (𝐾) − 𝜇𝑤 𝑗 − 𝑐𝑑 ( 𝑗)

)
= 𝐾𝑣 (𝐾) − 𝜇

∑︁
𝑗∈S+ (𝑔)

𝑤 𝑗 − 𝑐 |𝑔|,

where the first equality comes from (2), and the last equality is valid because the double-summation 258

is performed over all active suppliers, and each of them is counted in that double sum for every 259

neighbor of 𝑗 , that is, 𝑑 ( 𝑗) times. 260

The second component is the aggregate payoff of suppliers:

E
[∑︁
𝑗∈S

𝑢 𝑗 (𝑔,𝑤)
]
= 𝜇

∑︁
𝑗∈S+ (𝑔)

𝑎 𝑗 (𝑤)𝑤 𝑗 = 𝜇
∑︁

𝑗∈S+ (𝑔)
𝑤 𝑗 ,
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which comes directly from equation (5), and where the last equality is valid since every supplier 𝑗 261

we are summing over is active, so its likelihood 𝑎 𝑗 (𝑤) of being active is 1. 262

The third component is the expected consumer surplus:

E
[ ∫ 𝑇 (𝑆 )

0

(Δ − 𝑥) d𝑥 −
∑︁

𝑘∈S+ (𝑔)
𝑆𝑘 (Δ −𝑇 (𝑆))

]
= (𝑇 (𝑆) =

∑︁
𝑘∈S+ (𝑔)

𝑆𝑘 )

= E[(Δ𝑇 (𝑠) − 1

2
(𝑇 (𝑆))2) − (Δ𝑇 (𝑆) − (𝑇 (𝑆))2)] = 1

2

E
[
𝑇 (𝑆)𝑇 (𝑆)

]
=
1

2

E
[
(

∑︁
𝑗∈S+ (𝑔)

𝑆 𝑗 ) (
∑︁

𝑘∈S+ (𝑔)
𝑆𝑘 )

]
=
1

2

(
∑︁

𝑗,𝑘∈S+ (𝑔)
𝜇2 +

∑︁
𝑗∈S+ (𝑔)

σ2) = 𝐾

2

(𝜇2𝐾 + σ2).

Gathering all three above components of expected social welfare, we get

E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] =
∑︁

𝑗∈S+ (𝑔)

(
𝑣 (𝐾) − 𝜇𝑤 𝑗 − 𝑐𝑑 ( 𝑗) + 𝜇𝑤 𝑗 +

𝐾𝜇2 + σ2

2

)
=

∑︁
𝑗∈S+ (𝑔)

(
𝜇 (Δ − 𝜇𝐾) − σ2 − 𝑐𝑑 ( 𝑗) + 1

2

(𝐾𝜇2 + σ2)
)

=
∑︁

𝑗∈S+ (𝑔)

(
𝜇 (Δ − 𝜇𝐾

2

) − σ2

2

− 𝑐𝑑 ( 𝑗)
)
= 𝜇𝐾 (Δ − 𝜇𝐾

2

) − σ2𝐾

2

− 𝑐 |𝑔|.

Theorem 5.7 (Central Planner’s Optimum). In a sufficiently large supply chain, an optimum of
the central planner is a network where each of

𝐾𝑜𝑝𝑡 =

⌊Δ
𝜇
− 1

2

(
σ

𝜇

)
2

− 𝑐

𝜇2

⌋
= ⌊𝑦⌋

active suppliers has exactly one link, and these links are distributed among retailers in an arbitrary
fashion. The corresponding expected social welfare is

E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒𝑜𝑝𝑡 ] = (Δ𝜇 − σ
2/2 − 𝑐)2 − (𝜇2{𝑦})2

2𝜇2
. (8)

263

Proof. Proof of Theorem 5.7: From Lemma 5.6, we know that

E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] = 𝜇𝐾
(
Δ − 𝜇

2

𝐾

)
− 𝐾 σ2

2

− 𝑐 |𝑔 | = ℎ(𝐾, |𝑔|).

First, we notice that, for the central planner, it does not make sense to have suppliers of degree

larger than 1, as raising the degree beyond 1 would not affect 𝐾 , and would only worsen the linking

penalty term −𝑐 |𝑔|. Thus, in an optimal solution, each supplier has exactly one link, resulting in the

total number of links’ matching the number of active suppliers, that is, |𝑔| = 𝐾 (assuming that the

supply chain is sufficiently large, with 𝑛 ≥ 𝐾 ). Thus, the central planner’s solution is as follows:

ℎ(𝐾) = 𝜇𝐾
(
Δ − 𝜇

2

𝐾

)
− 𝐾 σ2

2

− 𝑐𝐾 → max,
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ℎ′ (𝐾) = −𝜇2𝐾 + Δ𝜇 − σ2/2 − 𝑐,⇒

𝐾𝑜𝑝𝑡 =

⌊Δ
𝜇
− 1

2

(
σ

𝜇

)
2

− 𝑐

𝜇2

⌋
= ⌊𝑦⌋ = 𝑦 − {𝑦},

ℎ(𝐾𝑜𝑝𝑡 ) = (Δ𝜇 − σ
2/2 − 𝑐)2 − (𝜇2{𝑦})2

2𝜇2
.

Once again, we assume that the supply chain is sufficiently large, and ℎ attains its maximum at 264

𝐾𝑜𝑝𝑡 rather than at the boundary values 𝑛 or𝑚. 265

5.3 Nash Equilibrium Analysis 266

We start by analyzing the behavior of suppliers—namely, the prices they set—at an equilibrium of 267

the two-stage game. 268

Theorem 5.8 (Eqilibrium Prices). In a sufficiently large two-stage supply chain formation game, 269

at a pure strategy Nash equilibrium,𝑤∗ = 0. 270

Proof. Proof of Theorem 5.8: As before, we assume that the prices are ordered as𝑤1 ≤ 𝑤2 ≤ 271

. . .𝑤𝑚 . 272

Suppliers’ behavior is driven by their expected payoff (5)

E[𝑢 𝑗 (𝑤)] = 𝑎 𝑗 (𝑤)𝑤 𝑗 𝜇,

where 𝜇 is constant,𝑤 𝑗 is the price chosen by supplier 𝑗 , and 𝑎 𝑗 (𝑤) is the likelihood of supplier 𝑗 ’s 273

being active in network equilibria potentially formed by retailers in response to the announced 274

prices𝑤 = (𝑤 𝑗 ,𝑤− 𝑗 ). 275

First, let us prove that, at an equilibrium, all the suppliers set identical prices, that is,𝑤∗ = const ·1. 276

From Theorem 4.7, we know that the number of active suppliers in an equilibrium network is

either 𝐾∗ or (𝐾∗ − 1), where
𝐾∗ = min{𝐾 ∈ Z+ | 𝑣 (𝐾 + 1) − 𝜇𝑤𝐾+1 − 𝑐 < 0},

and it can be only 𝐾∗ if 𝑣 (𝐾∗) − 𝜇𝑤𝐾∗ − 𝑐 < 0 (in contrast to being exactly zero). 277

If the latter expression is indeed negative, then prices 𝑤𝐾∗+1, . . . ,𝑤𝑚 cannot be strictly larger 278

than𝑤𝐾∗ at an equilibrium (since, if they were, the corresponding suppliers would never be linked 279

to, making their expected payoffs 0), and prices𝑤1, . . . ,𝑤𝐾∗−1 cannot be bounded away from𝑤𝐾∗ 280

(as the corresponding suppliers will be linked at an equilibrium anyway, and they can increase 281

their prices up to (𝑤𝐾∗ − 𝜖) without affecting their likelihoods 𝑎 𝑗 (𝑤) = 1 of being active). 282

If 𝑣 (𝐾∗) − 𝜇𝑤𝐾∗ − 𝑐 = 0, that is, if supplier 𝐾∗’s activation does not affect a retailer’s expected 283

payoff, reasoning similarly to the previous case, the prices 𝑤1, . . . ,𝑤𝐾∗−1 should be identical—it 284

does not make sense to keep a price below𝑤𝐾∗−1, as the cheapest (𝐾∗ − 1) suppliers will be linked 285

to (assuming an existing gap between𝑤𝐾∗−1 and𝑤𝐾∗ ). At the same time,𝑤𝐾∗ ,𝑤𝐾∗+1, . . . ,𝑤𝑚 should 286

also be identical, as setting a price larger than𝑤𝐾∗ would make 𝑎 𝑗 (𝑤) = 0.

287

Now, the question is whether it is better to have𝑎 𝑗 (𝑤) = 1 and a smaller price𝑤1, or𝑎 𝑗 (𝑤) ∈ (0, 1) 288

and a larger price𝑤𝐾∗ . The likelihood 𝑎 𝑗 (𝑤) of being linked to for suppliers 𝐾∗, . . . ,𝑚 reflects how 289
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often one of these suppliers is chosen to be the 𝐾∗’th active supplier, and is inversely proportional 290

to𝑚. Recalling our assumption that𝑚 is sufficiently large, we can conclude that 𝑎 𝑗 (𝑤) ∈ (0, 1) can 291

be made arbitrarily small, making 𝑎 𝑗 ((𝑤1,𝑤−1))𝑤1 = 𝑤1 > 𝑎 𝑗 ((𝑤𝐾∗ ,𝑤−𝐾∗ ))𝑤𝐾∗ , thereby, driving 292

prices𝑤𝐾∗ , . . . ,𝑤𝑚 towards𝑤1. 293

Thus, the suppliers have an incentive to set identical prices at an equilibrium. 294

Finally, we notice that, if𝑤 = const ·1, then every supplier has an incentive to reduce its price 295

by an infinitesimal amount, becoming the cheapest supplier and increasing its likelihood of being 296

active from an arbitrarily small 𝑎 𝑗 (𝑤) ∈ (0, 1) (as the number of supplier competing on the price 297

scales together with𝑚 that can be arbitrarily large) to 𝑎 𝑗 (𝑤) = 1. As a result, all the prices are 298

driven towards their lower bound, which in this case is 0. 299

According to Theorem 5.8, at an equilibrium, suppliers trade at a zero profit. This insight allows 300

us to revisit our previous statements about the number of active suppliers as well as their degrees 301

at a network equilibrium, which we do in the following theorem. 302

Theorem 5.9 (Nash Eqilibria in Two-stage Game). In a sufficiently large two-stage supply
chain formation game (see Definition 5.4), at any pure strategy Nash equilibrium (𝑔∗,𝑤∗) of this game,
𝑤∗ = 0, and the number of active suppliers is either 𝐾 = 𝐾∗, with

𝐾∗ =
⌊Δ
𝜇
−

(
σ

𝜇

)
2

− 𝑐

𝜇2

⌋
= ⌊𝑧⌋,

or 𝐾 = 𝐾∗ or 𝐾 = (𝐾∗ − 1) if 𝑣 (𝐾∗) = 𝑐 . Each of the active suppliers has degree 𝑑 ( 𝑗) = ⌊𝑣 (𝐾)/𝑐⌋, and, 303

more specifically, if 𝐾 = 𝐾∗, then 𝑑 ( 𝑗) = ⌊1+ 𝜇2{𝑧}/𝑐⌋; if 𝐾 = 𝐾∗−1, then 𝑑 ( 𝑗) = ⌊1+ 𝜇2 (1+ {𝑧})/𝑐⌋; 304

where 𝐾 = 𝐾∗ − 1 is possible only if 𝑣 (𝐾∗) = 𝑐 . 305

Proof. Proof of Theorem 5.9: Applying Theorem 4.7 to the case𝑤∗ = 0, we immediately get

𝐾∗ = min{𝐾 ∈ Z+ | 𝑣 (𝐾 + 1) − 𝑐 < 0},

where 𝑣 (𝐾) = 𝜇 (Δ − 𝜇𝐾) − σ2
, so

𝐾∗ =
⌊Δ
𝜇
−

(
σ

𝜇

)
2

− 𝑐

𝜇2

⌋
= ⌊𝑧⌋ .

Furthermore, from Theorem 4.8, we have

𝑑 ( 𝑗) = ⌊𝑣 (𝐾)/𝑐⌋ .
If 𝐾 = 𝐾∗: 𝑑 ( 𝑗) = ⌊𝑣 (𝐾∗)/𝑐⌋ = ⌊𝑣 (⌊𝑧⌋)/𝑐⌋ = ⌊1 + 𝜇2{𝑧}/𝑐⌋ . 306

If 𝐾 = 𝐾∗ − 1: 𝑑 ( 𝑗) = ⌊𝑣 (𝐾∗ − 1)/𝑐⌋ = ⌊𝑣 (⌊𝑧⌋ − 1)/𝑐⌋ = ⌊1 + 𝜇2 (1 + {𝑧})/𝑐⌋ . 307

In the analysis of equilibrium efficiency, we consider only the case when 𝑣 (𝐾∗) > 𝑐 and, hence, 308

the number of active suppliers in every equilibrium is exactly 𝐾∗. The analysis for the case of 309

𝑣 (𝐾∗) = 𝑐 and 𝐾 = 𝐾∗ or 𝐾 = 𝐾∗ − 1 is very similar, and brings no additional insights. 310

Theorem 5.10 (Eqilibrium Welfare). In a sufficiently large two-stage supply chain formation
game (see Definition 5.4), its pure strategy Nash equilibria, characterized in Theorem 5.9, have the
following expected social welfare

E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] = (Δ𝜇 − 𝑐 − 𝜇
2{𝑧} − σ2) (Δ𝜇 − 𝑐 − 𝜇2{𝑧} + 2𝑐{𝜇2{𝑧}/𝑐})

2𝜇2
,

where 𝑧 = Δ
𝜇
−

(
σ
𝜇

)
2

− 𝑐
𝜇2
. 311
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Proof. Proof of Theorem 5.10: From Theorem 5.9, we have expressions for both the number 𝐾∗

of active suppliers, and their degrees 𝑑 ( 𝑗) at an equilibrium 𝑔∗:

𝐾∗ =
⌊Δ
𝜇
−

(
σ

𝜇

)
2

− 𝑐

𝜇2

⌋
= ⌊𝑧⌋ = 𝑧 − {𝑧},

𝑑 ( 𝑗) = ⌊1 + 𝜇2{𝑧}/𝑐⌋,
where 𝑗 ∈ S+ (𝑔∗). As every supplier has the same degree, then the total number of links is

|𝑔| = 𝐾𝑑 ( 𝑗) = 𝐾 ⌊1 + 𝜇2{𝑧}/𝑐⌋ .
Substituting three above expressions in the expression (7)

E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] = 𝜇𝐾
(
Δ − 𝜇𝐾

2

)
− 𝐾 σ2

2

− 𝑐 |𝑔|

for expected social welfare, we get the expression in the theorem’s statement. 312

6 PRICE FORMATION UNDER HETEROGENEOUS SUPPLY VARIANCE 313

In this section, we allow supply variance to vary across suppliers. For simplicity, we will consider a 314

small deviation from the case of identical suppliers by allowing the first supplier to be strictly more 315

reliable. For this case, the price formation behavior of the supplier is characterized in the following 316

theorem. 317

Theorem 6.1 (Prices at Eqilibrium with Heterogeneous Supply Variance). In a two-stage
supply chain formation game with a sufficiently large number of strategic retailers and suppliers,
if random supplies have identical means E[𝑆 𝑗 ] = 𝜇 and non-identical variances Var[𝑆1] = σ2

1
<

σ2

2
= Var[𝑆2] = · · · = Var[𝑆𝑚], and suppliers perform equilibrium selection ignoring equilibria where

“high-value” suppliers are not linked to

𝑔∗ ∈ 𝜉 (𝑤) → ∀𝑗 ∈ S0 (𝑔∗) : σ2

𝑗 + 𝜇𝑤 𝑗 ≥ max

ℓ∈S+ (𝑔∗ )
{σ2

ℓ + 𝜇𝑤ℓ }.

then, at a pure strategy Nash equilibrium,

𝑤∗
1
=
σ2

2
− σ2

1

𝜇
− 𝜀, 𝑤∗

2
= · · · = 𝑤∗𝑚 = 0,

where 𝜀 is a positive real value approaching 0. 318

Proof. Proof of Theorem 6.1: Following Lemma 4.2, we compute the expected payoff of a retailer

under fixed𝑤 as

E[𝑢𝑖 (𝑔,𝑤)] =
∑︁
𝑗∈𝑁 (𝑖 )

(𝑣 𝑗 (𝐾) − 𝜇𝑤 𝑗

𝑑 ( 𝑗) − 𝑐
)
, 𝑣 𝑗 (𝐾) = 𝜇 (Δ − 𝜇𝐾) − σ2

𝑗 , 𝐾 = 𝐾 (𝑔) = |S+ (𝑔) |.

Algorithm 1 that greedily constructs a pure strategy Nash equilibrium network with the largest 319

number𝐾∗𝑚𝑎𝑥 of active suppliers at an equilibrium still applies to this case, except that the algorithm 320

now selects suppliers having ordered them in an ascending order by (σ2

𝑗 + 𝜇𝑤 𝑗 ) rather than by 321

𝑤 𝑗 in the case of identical suppliers. With that change, with get an analog of Theorem 4.6 stating 322

equilibrium existence, and an analog of Theorem 4.7 that establishes the number of active suppliers 323

at an equilibrium. 324

Analogously to Theorem 4.8, we establish that supplier 𝑗 has the following degree at an equilib- 325

rium is 𝑑 ( 𝑗) = ⌊(𝑣 𝑗 (𝐾) − 𝜇𝑤 𝑗 )/𝑐⌋. 326

Finally, price formation happens similarly to how it is described in the proof of Theorem 5.8,

with one qualitative difference. While the prices are driven towards 0, the first supplier—which has
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a strictly lower supply variance σ2

1
—has advantage over other suppliers having a higher supply

variance σ2

2
. For supplier 1 and any other supplier, say, 2, to be equivalent from the point of view of

retailers linking to them, it must be that σ2

1
+ 𝜇𝑤1 = σ2

2
+ 𝜇𝑤2 or, equivalently,𝑤1−𝑤2 = (σ2

2
−σ2

1
)/𝜇.

Consequently, while 𝑤2 is driven to 0, the first supplier can set its price 𝑤∗
1
to any value below

(σ2

2
−σ2

1
)/𝜇, thereby, guaranteeing itself the status of the “best-value” supplier that is always linked

to in the considered equilibria 𝜉 (𝑤), making its expected payoff

E[𝑢 𝑗 (𝑤)] = 𝑎 𝑗 (𝑤)𝜇𝑤∗1 = 𝜇𝑤∗1 ≈ σ2

2
− σ2

1
.

If, instead, the first supplier decided to set its price to a value strictly larger than (σ2

2
− σ2

1
)/𝜇, then 327

it would never be linked to by the retailers, making its expected payoff 0. If it set its price to exactly 328

(σ2

2
− σ2

1
)/𝜇, then, from the retailers’ perspective, it would be equivalent to all the other suppliers, 329

whose number (𝑚 − 1) can be arbitrarily large and, consequently, the first supplier’s likelihood 330

𝑎 𝑗 (𝑤) of being linked to would be arbitrarily small, as would be that supplier’s expected payoff. 331

Theorem 6.1 establishes that suppliers have an incentive to improve their reliability, as the latter 332

would allow them to trade at a positive marginal profit, in contrast to the zero marginal profit when 333

all suppliers are identical; and the value of the marginal profit is determined by the difference in 334

supply variances. 335

Having stated the result for prices at equilibrium, we will now characterize how the improvement 336

in a supplier’s supply variance affects social welfare, ignoring the infinitesimal 𝜀 in the expression 337

for the price of the first (improved) supplier obtained in Theorem 6.1. 338

Theorem 6.2. Under the conditions of Theorem 6.1, when one supplier has a strictly better supply
variance σ2

1
< σ2

2
= · · · = σ2

𝑚 , the total expected social welfare changes as

E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] = E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒𝑖𝑑𝑒𝑛𝑡 ] + 1

2
(σ2

2
− σ2

1
),

where E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒𝑖𝑑𝑒𝑛𝑡 ] is the social welfare for the supply chain with identical suppliers, characterized 339

in Theorem 5.10. In particular, 340

(1) the welfare of suppliers increases by E[𝑢1 (𝑤∗)] = σ2

2
− σ2

1
; 341

(2) the welfare of retailers is unchanged; and 342

(3) consumers’ welfare decreases by 1

2
(σ2

2
− σ2

1
). 343

Proof. Proof of Theorem 6.2: First, notice that, when the first supplier improves its supply

variance, this does not affect either the number 𝐾∗ of active suppliers or the degree 𝑑 ( 𝑗) of every
supplier at an equilibrium. Indeed, 𝐾∗ is defined as

𝐾∗ = min{𝐾 ∈ Z+ | 𝑣𝐾+1 (𝐾 + 1) − 𝜇𝑤𝐾+1 − 𝑐 < 0}.
𝐾 cannot be 0, as the opposite would violate Assumption 1 about each supplier’s “value” being

non-negative in the absence of links. This, however, mean that the expression

𝐾∗ =
⌊Δ
𝜇
−

(
σ

𝜇

)
2

− 𝑐

𝜇2

⌋
= ⌊𝑧⌋

for 𝐾∗ from Theorem 5.9 is still valid even when the first supplier changes its supply variance.

Furthermore, at an equilibrium

𝑣1 (𝐾) −𝜇𝑤∗1 = 𝜇 (Δ−𝜇𝐾) −σ2

1
−𝜇𝑤∗

1
= 𝜇 (Δ−𝜇𝐾) −σ2

1
−𝜇

σ2

2
− σ2

1

𝜇
= 𝜇 (Δ−𝜇𝐾) −σ2

𝑗 = 𝑣 𝑗 (𝐾) −𝜇𝑤∗𝑗 ,

where 𝑗 > 1, so the previously derived expression for the supplier degree at an equilibrium 344

𝑑 ( 𝑗) = ⌊(𝑣 𝑗 (𝐾) − 𝜇𝑤 𝑗 )/𝑐⌋ is still valid, and according to it, all suppliers still have the same degree 345

at an equilibrium. 346
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Equipped with the two observations above, we can now follow the computation of expected 347

social welfare from Theorem 5.6, and analyze what happens to its different components when the 348

first supplier improves its supply variance. 349

The retailers’ welfare, defined as

E
[∑︁
𝑖∈D

𝑢𝑖 (𝑔,𝑤)
]
=

∑︁
𝑖∈D

∑︁
𝑗∈𝑁 (𝑖 )

(
𝑣 𝑗 (𝐾) − 𝜇𝑤 𝑗

𝑑 ( 𝑗) − 𝑐
)

clearly does not change as a result of the change in σ2

1
, as both 𝑣 𝑗 (𝐾)−𝜇𝑤 𝑗 = const and𝑑 ( 𝑗) = const 350

across all the suppliers at an equilibrium. 351

Suppliers’ welfare

E
[∑︁
𝑗∈S

𝑢 𝑗 (𝑔,𝑤)
]
= 𝜇

∑︁
𝑗∈S+ (𝑔)

𝑤∗𝑗 = 𝜇𝑤
∗
1
= 𝜇

σ2

2
− σ2

1

𝜇
= σ2

2
− σ2

1

includes zero welfare of the majority of the suppliers who set zero prices, and positive welfare 352

σ2

2
− σ2

1
of the first supplier, while it is used to be 0 in the case of identical suppliers. 353

Finally, consumer surplus changes as

E
[ ∫ 𝑇 (𝑆 )

0

(Δ − 𝑥) d𝑥 −
∑︁

𝑘∈S+ (𝑔)
𝑆𝑘 (Δ −𝑇 (𝑆))

]
=
1

2

E
[
(

∑︁
𝑗∈S+ (𝑔)

𝑆 𝑗 ) (
∑︁

𝑘∈S+ (𝑔)
𝑆𝑘 )

]
=
1

2

(
∑︁

𝑗,𝑘∈S+ (𝑔)
𝜇2 +

∑︁
𝑗∈S+ (𝑔)

σ2

𝑗 ) =
1

2

(𝐾2𝜇2 + (𝐾 − 1)σ2

2
+ σ2

1
) = 1

2

(𝐾2𝜇2 + 𝐾σ2

2
+ σ2

1
− σ2

2
)

=
𝐾

2

(𝐾𝜇2 + σ2

2
) −

σ2

2
− σ2

1

2

= E[𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒𝑖𝑑𝑒𝑛𝑡 ] −
σ2

2
− σ2

1

2

,

where E[𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒𝑖𝑑𝑒𝑛𝑡 ] is expected consumer surplus for the case of identical suppliers, 354

calculated in the proof of Lemma 5.6. 355

If we collect the changes to welfare of suppliers, retailers, and consumers above, we will arrive at 356

the conclusion that the total expected social welfare—being the sum of the three above mentioned 357

components—increases by (σ2

2
− σ2

1
)/2, with consumers paying that amount, and suppliers earning 358

twice that much. 359

According to Theorem 6.2, improvement of supplier reliability benefits the corresponding sup- 360

pliers, while retailers are not being affected, and the consumers face the reliability improvement 361

cost. 362

7 PRICE FORMATION UNDER HETEROGENEOUS SUPPLY EXPECTATION 363

While in the previous section, we established that suppliers are incentivized to improve their 364

reliability to make positive marginal profit, the natural question is whether an analogous statement 365

about improving expected supply is also valid. 366

Let us consider a simple environment similar to the one in the previous section, but let the first

supplier to have a strictly better expected supply

𝜇1 = 𝜇 + 𝛿, (𝛿 > 0), 𝜇2 = 𝜇3 = · · · = 𝜇𝑚 = 𝜇,

while all the suppliers are identical w.r.t. supply variance σ2
. 367

Theorem 7.1 (Network Eqilibria with Heterogeneous Supply Mean). In a sufficiently large
supply chain network formation game with fixed𝑤 , where suppliers have identical supply variances
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Var[𝑆 𝑗 ] = σ2, yet, the first supplier has a strictly better mean supply E[𝑆1] = 𝜇 + 𝛿 > 𝜇 = E[𝑆2] =
E[𝑆3] = · · · = E[𝑆𝑚], let us put

𝐵(𝐾) =
{
𝑠 ⊆ S | |𝑠 | = 𝐾 ;∀𝑗 ∈ 𝑠 : 𝑣 𝑗 (𝑠) − 𝜇 𝑗𝑤 𝑗 − 𝑐 ≥ 0;

∀𝑠′ ≠ 𝑠 : |𝑠′ | = |𝑠 | →
∑︁
𝑗 ′∈𝑠′
(Δ −

∑︁
ℓ∈𝑠′

𝜇ℓ −𝑤 𝑗 ′ )𝜇 𝑗 ′ ≤
∑︁
𝑗∈𝑠
(Δ −

∑︁
ℓ∈𝑠

𝜇ℓ −𝑤 𝑗 )𝜇 𝑗
}

to be the set of cardinality-𝐾 subsets of best suppliers, with 𝑣 𝑗 (𝑠) = (Δ −
∑
ℓ∈𝑠 𝜇ℓ )𝜇 𝑗 − σ2. Then 368

• a pure strategy Nash equilibrium of that game exists; and 369

• the largest number of active suppliers in an equilibrium network is

𝐾∗𝑚𝑎𝑥 = min{𝐾 | ∀𝐾+ > 𝐾 : 𝐵(𝐾+) = ∅}.

Proof. Proof of Theorem 7.1: The definition of the largest number 𝐾∗𝑚𝑎𝑥 of active suppliers at 370

an equilibrium together with the greedy construction of an equilibrium with such number of active 371

suppliers goes along the lines of Algorithm 1 and Lemma 4.5—we, first, activate as many suppliers 372

as possible and, subsequently, attach as many links as possible to every active supplier using a 373

vacant demand node for every link creation. However, there is one difference. Here, we cannot 374

rank suppliers by price𝑤 𝑗 any longer, and, furthermore, there is no static ranking of suppliers. As a 375

result, we define sets 𝑠 ∈ 𝐵(𝐾) of best suppliers of size 𝐾 and pick one of them—that corresponds to 376

the largest 𝐾∗𝑚𝑎𝑥—for an equilibrium obtained by attaching as many links as possible to the chosen 377

suppliers. Notice, that 𝐾∗𝑚𝑎𝑥 is well-defined, as 𝑣 𝑗 (𝑠) monotonically decreases in the number of 378

active suppliers |𝑠 |, while the total number𝑚 of suppliers is sufficiently large, and, at some point, 379

condition 𝑣 𝑗 (𝑠) − 𝜇 𝑗𝑤 𝑗 − 𝑐 ≥ 0 will not hold for any supplier in the system. 380

Existence of equilibrium immediately follows, as in Theorem 4.6 for the case of identical suppliers. 381

Theorem 7.2 (Prices at Eqilibrium with Heterogeneous Supply Mean). In a two-stage
supply chain formation game with a sufficiently large number of strategic retailers and suppliers,
if random supplies have identical variances Var[𝑆 𝑗 ] = σ2 and non-identical means 𝜇1 = 𝜇 + 𝛿 >

𝜇 = E[𝑆2] = · · · = E[𝑆𝑚], and suppliers perform equilibrium selection ignoring equilibria where
“high-value” suppliers are not linked to

𝑔∗ ∈ 𝜉 (𝑤) → ∀𝑗0 ∈ S0 (𝑔∗) :
(
Δ −

∑︁
ℓ∈S+ (𝑔∗ )

𝜇ℓ −𝑤 𝑗0

)
𝜇 𝑗0 ≥ max

𝑗+∈S+ (𝑔∗ )

{(
Δ −

∑︁
ℓ∈S+ (𝑔∗ )

𝜇ℓ −𝑤 𝑗+

)
𝜇 𝑗+

}
.

if the largest number 𝐾∗𝑚𝑎𝑥 of active suppliers at an equilibrium, defined in Theorem 7.1, is greater
than 1, then at a pure strategy Nash equilibrium, supplier prices are

𝑤∗
1
= 𝛿

(
Δ − 𝜇𝐾∗𝑚𝑎𝑥
𝜇 + 𝛿 − 1

)
− 𝜀, 𝑤∗

2
= · · · = 𝑤∗𝑚 = 0,

where 𝜀 > 0 approaches 0. If 𝐾∗𝑚𝑎𝑥 = 1, then (𝑤∗
2
, . . . ,𝑤∗𝑚) ∈ [0;Δ − 𝜇 − (σ2 + 𝑐)/𝜇]𝑚−1. 382

Proof. Proof of Theorem 7.2: Reasoning from the proof of Theorem 5.8 entails that identical 383

suppliers 2, 3, . . . ,𝑚 are driven towards setting identical prices, and their willingness to boost their 384

likelihoods 𝑎 𝑗 (𝑤) of being linked to at a network equilibrium from a sufficiently small value in 385

(0, 1) to the value of 1 drives the prices to 0. 386

In this setting, if we assume a particular number 𝐾 of active suppliers at an equilibrium, if the first

supplier set its price𝑤1 to be

𝑤1 = 𝛿

(
Δ − 𝜇𝐾
𝜇 + 𝛿 − 1

)
,
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it would entail ∀𝑗 > 1 : (Δ − ∑
ℓ∈S+ (𝑔∗ ) 𝜇ℓ − 𝑤 𝑗 )𝜇 𝑗 = (Δ −

∑
ℓ∈S+ (𝑔∗ ) 𝜇ℓ − 𝑤1)𝜇1, that is, the first

supplier would have been indistinguishable from the rest of the suppliers from the perspective of

a retailer. If supplier uses such price, then it will compete with a number of suppliers that scales

together with the number (𝑚 − 1) of other suppliers, making its likelihood 𝑎1 (𝑤) of being linked

to an arbitrarily small value (as the size𝑚 of the chain is sufficiently large). Furthermore, as all

the other suppliers set identical prices, supplier 1 will be indistinguishable from either all or none

of them. Hence, to boost its likelihood 𝑎1 (𝑤) of being linked to from an arbitrarily small value to

1, the first supplier needs to make sure that regardless of what the number 𝐾 of active suppliers

at an equilibrium is, this supplier’s “value” is strictly higher than that of every other supplier.

Consequently, the price of this supplier approaches the price at which it is indistinguishable from

other suppliers at an equilibrium with the largest number of active suppliers from the left

𝑤∗
1
→ 𝛿

(
Δ − 𝜇𝐾∗𝑚𝑎𝑥
𝜇 + 𝛿 − 1

)
− 0.

If, however, it happens that 𝐾∗𝑚𝑎𝑥 = 1, then, while the first supplier conservatively sets its price 387

as described above and gets links, all the other suppliers will have no links regardless of their prices, 388

and, hence, (𝑤∗
2
, . . . ,𝑤∗𝑚) ∈ [0;Δ − 𝜇 − σ2+𝑐

𝜇
]𝑚−1, where the upper bound on the supplier price 389

comes from Assumption 1. 390

Having established how suppliers set prices at an equilibrium, we can characterize how social 391

welfare changes in response to the first supplier’s improving its capacity. In what follows, we 392

will ignore the corner-case 𝐾∗𝑚𝑎𝑥 = 1 from Theorem 7.2, that corresponds to a large number of 393

non-informative equilibria. 394

Theorem 7.3. Under the conditions of Theorem 7.2, when one supplier has a strictly higher mean 395

supply 𝜇1 = 𝜇 + 𝛿 > 𝜇 = 𝜇2 = · · · = 𝜇𝑚 , 396

• the total expected welfare increases by approximately 𝛿 (Δ − 𝜇 (𝐾∗𝑚𝑎𝑥 − 𝐾∗ + 1) − 𝛿/2) > 0 397

• the expected welfare of suppliers increases by 𝛿 (Δ − 𝜇 (𝐾∗𝑚𝑎𝑥 + 1) − 𝛿) > 0; 398

• the expected welfare of consumers increases by 𝛿 (𝜇𝐾∗ + 𝛿/2) > 0; 399

• while retailers’ expected welfare approximately does not change; 400

where 𝐾∗ is the number of active suppliers in an equilibrium network formed by the retailers, and 401

𝐾∗𝑚𝑎𝑥 is the largest number of active suppliers at an equilibrium. 402

Proof. Proof of Theorem 7.3: From Theorem 7.2, we know

𝑤∗
1
≈ 𝛿

(
Δ − 𝜇𝐾∗𝑚𝑎𝑥
𝜇 + 𝛿 − 1

)
,𝑤∗𝑗 = 0, 𝑗 > 1.

Now, we can substitute these prices, together with 𝜇1 = 𝜇 + 𝛿, 𝜇 𝑗 = 𝜇, 𝑗 > 1 into the expressions for 403

expected welfare of suppliers, retailers, and consumers, coming from equation (6) in Definition 5.5. 404

(In what follows, notation 𝑋 ′ will mean 𝑋 after the first supplier increased its mean supply.) 405

Suppliers’ welfare changes as

E[𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒′] = E[𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] + 𝜇1𝑤∗1
= E[𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] + 𝛿 (Δ − 𝜇 (𝐾∗𝑚𝑎𝑥 + 1) − 𝛿),
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where 𝛿Δ is the dominant term scaling together with the total number𝑚 of suppliers, making the 406

second summand in the obtained expression positive. Thus, the welfare of suppliers (actually, just 407

the welfare of the first supplier) increases. 408

Consumers’ surplus changes as

E[𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒′] = E
[ ∫ 𝑇 (𝑆 )

0

(Δ − 𝑥) d𝑥 −
∑︁

𝑘∈S+ (𝑔∗ )
𝑆𝑘 (Δ −𝑇 (𝑆))

]
=
1

2

E
[
(

∑︁
𝑗∈S+ (𝑔∗ )

𝑆 𝑗 ) (
∑︁

𝑘∈S+ (𝑔∗ )
𝑆𝑘 )

]
=
1

2

E
[
𝑆2
1
+ 2𝑆1

∑︁
𝑗∈S+ {1}

𝑆 𝑗 + (
∑︁

𝑗∈S+ {1}
𝑆 𝑗 )2

]
=
1

2

[
(𝜇 + 𝛿)2 + σ2 + 2(𝜇 + 𝛿) (𝐾∗ − 1)𝜇 + (𝐾∗ − 1)2𝜇2 + (𝐾∗ − 1)σ2

]
=
1

2

[
(𝜇2 + 2(𝐾∗ − 1)𝜇2 + (𝐾∗ − 1)2𝜇2) + 𝐾∗σ2 + (2𝜇𝛿 + 𝛿2 + 2(𝐾∗ − 1)𝜇𝛿)

]
=
1

2

[𝐾∗2𝜇2 + 𝐾∗σ2] + 1

2

(2𝐾∗𝜇𝛿 + 𝛿2) = E[𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] + 𝛿 (𝐾∗𝜇 + 𝛿/2) .

In the obtained expression, 𝐾∗ is the number of active suppliers in a particular equilibrium network 409

formed by the retailers that, generally, can be smaller than 𝐾∗𝑚𝑎𝑥 . 410

Prior to computing the change in retailer and total welfare, we need to establish how supplier

degrees at equilibrium change after the first supplier increases its mean supply. As before the degree

of supplier 𝑗 at equilibrium is

𝑑 ( 𝑗, 𝑔∗) =
⌊𝑣 𝑗 (𝑔∗) − 𝜇 𝑗𝑤∗𝑗

𝑐

⌋
=

⌊(
(Δ −

∑︁
ℓ∈S+ (𝑔∗ )

𝜇ℓ )𝜇 𝑗 − σ2 − 𝜇 𝑗𝑤∗𝑗
)
/𝑐

⌋
.

Ignoring the small 𝜀 in the expression for𝑤∗
1
, and substituting that price into the above expression

for a supplier’s degree, we obtain

𝑑 (1)′ =
⌊ (Δ − 𝐾∗𝜇)𝜇 − σ2

𝑐
+ 𝛿𝜇 (𝐾

∗
𝑚𝑎𝑥 − 𝐾∗ + 1)

𝑐

⌋
≈

⌊ (Δ − 𝐾∗𝜇)𝜇 − σ2

𝑐

⌋
+

⌊𝛿𝜇 (𝐾∗𝑚𝑎𝑥 − 𝐾∗ + 1)
𝑐

⌋
= 𝑑 (1) +

⌊𝛿𝜇 (𝐾∗𝑚𝑎𝑥 − 𝐾∗ + 1)
𝑐

⌋
.

Doing the same for 𝑑 ( 𝑗), 𝑗 > 1, we obtain

𝑑 ( 𝑗)′ =
⌊ (Δ − 𝐾∗𝜇)𝜇 − σ2 − 𝜇𝑤∗𝑗

𝑐
− 𝛿𝜇
𝑐

⌋
≈ 𝑑 ( 𝑗) −

⌈𝛿𝜇
𝑐

⌉
.
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Now, we can use the derived above expressions for supplier degrees to compute the change to

retailer welfare.

E[𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒]′ =
∑︁

𝑗∈S+ (𝑔∗ )

(
𝑣 𝑗 (𝑔)′ − 𝜇 𝑗𝑤∗𝑗 − 𝑐𝑑 ( 𝑗)′

)
= (𝑣1 (𝑔)′ − (𝜇 + 𝛿)𝑤∗1 − 𝑐𝑑 (1)′) +

∑︁
𝑗∈S+ (𝑔∗ ) {1}

(
𝑣 𝑗 (𝑔) − 𝛿𝜇 − 𝜇𝑤∗𝑗 − 𝑐𝑑 ( 𝑗)′

)
= (Δ − 𝐾∗𝜇 − 𝛿) (𝜇 + 𝛿) − σ2 − 𝑐𝑑 (1) − 𝛿 (Δ − 𝜇𝐾∗𝑚𝑎𝑥 − 𝜇 − 𝛿) − 𝑐

⌊𝛿𝜇
𝑐
(𝐾∗𝑚𝑎𝑥 − 𝐾∗ + 1)

⌋
+

∑︁
𝑗∈S+ (𝑔∗ ) {1}

(
𝑣 𝑗 (𝑔) − 𝜇𝑤∗𝑗 − 𝑐𝑑 ( 𝑗)

)
+

∑︁
𝑗∈S+ (𝑔∗ ) {1}

(
−𝛿𝜇 + 𝑐 ⌈𝛿𝜇/𝑐⌉

)
=

∑︁
𝑗∈S+ (𝑔∗ )

(𝑣 𝑗 (𝑔∗) − 𝜇𝑤∗𝑗 − 𝑐𝑑 ( 𝑗)) + (Δ − 𝐾∗𝜇 − 𝛿)𝛿 − 𝛿 (Δ − 𝜇 (𝐾∗𝑚𝑎𝑥 + 1) − 𝛿)

− 𝑐
⌊𝛿𝜇
𝑐
(𝐾∗𝑚𝑎𝑥 − 𝐾∗ + 1)

⌋
+ (𝐾∗ − 1) (𝑐 ⌈𝛿𝜇/𝑐⌉ − 𝛿𝜇)

= E[𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] + (Δ − 𝐾∗𝜇 − 𝛿)𝛿 − 𝛿 (Δ − 𝜇 (𝐾∗𝑚𝑎𝑥 + 1) − 𝛿)

− 𝑐
⌊𝛿𝜇
𝑐
(𝐾∗𝑚𝑎𝑥 − 𝐾∗ + 1)

⌋
+ (𝐾∗ − 1) (𝑐 ⌈𝛿𝜇/𝑐⌉ − 𝛿𝜇)

≈ E[𝑅𝑒𝑡𝑎𝑖𝑙𝑒𝑟𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒],

where the last approximation is obtained by assuming divisibility in floor/ceil operators in the 411

obtained expressions. 412

Having collected the changes to each of the welfare components, we can establish that the total

expected welfare changes in response to the first supplier’s increasing its mean supply by 𝛿 as

E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒]′ ≈ E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒] + 𝛿 (Δ − 𝜇 (𝐾∗𝑚𝑎𝑥 − 𝐾 + 1) − 𝛿/2).

Inside the second factor in the obtained expression, Δ is the dominating term (as the chain is large), 413

so, in general, the change to the total welfare is positive. 414

Notice that the expression for social welfare in Theorem 7.3—unlike the analogous expression in 415

Theorem 5.10 for the case of identical suppliers—depends on which equilibrium retailers arrive at 416

and, more specifically, on the number of suppliers being active at that equilibrium. 417

8 CONCLUSION 418

In this work, we have considered strategic formation of supply chains with strategic suppliers—who 419

set prices anticipating retailer response—and strategic retailers—who link to suppliers maximizing 420

expected payoffs and being driven by both supply uncertainty and the set prices. Our major findings 421

are that (i) formed supply chain equilibria are inefficient w.r.t. centrally planned supply chains, and 422

(ii) different ways to improve supply uncertainty have different effects upon welfare—increasing 423

mean supply is universally good, while decreasing supply variance lowers consumer surplus. 424

ACKNOWLEDGMENTS 425

The work is supported in part by the Rockefeller Foundation under grant 2017 PRE 301. 426

REFERENCES 427

[1] Victor Amelkin and Rakesh Vohra. 2019. Strategic Formation and Reliability of Supply ChainNetworks. arXiv:1909.08021 428

[cs.GT] (Sept. 2019). Available at https://arxiv.org/abs/1909.08021. 429

https://arxiv.org/abs/1909.08021


Victor Amelkin and Rakesh Vohra 20

[2] Erjie Ang, Dan A Iancu, and Robert Swinney. 2016. Disruption risk and optimal sourcing in multitier supply networks. 430

Management Science 63, 8 (2016), 2397–2419. 431

[3] Ravi Anupindi and Ram Akella. 1993. Diversification under supply uncertainty. Management Science 39, 8 (1993), 432

944–963. 433

[4] Volodymyr Babich, Apostolos N Burnetas, and Peter H Ritchken. 2007. Competition and diversification effects in 434

supply chains with supplier default risk. Manufacturing & Service Operations Management (MSOM) 9, 2 (2007), 123–146. 435

[5] Kostas Bimpikis, Ozan Candogan, and Shayan Ehsani. 2019. Supply Disruptions and Optimal Network Structures. 436

Management Science Articles in Advance, 0 (2019), pp. 1–14. Available at https://dx.doi.org/10.1287/mnsc.2018.3217. 437

[6] Kostas Bimpikis, Douglas Fearing, and Alireza Tahbaz-Salehi. 2018. Multisourcing and miscoordination in supply 438

chain networks. Operations Research 66, 4 (2018), 1023–1039. 439

[7] Roger E Bohn and Christian Terwiesch. 1999. The economics of yield-driven processes. Journal of Operations 440

Management 18, 1 (1999), 41–59. 441

[8] Gérard P Cachon and Martin A Lariviere. 1999. An equilibrium analysis of linear, proportional and uniform allocation 442

of scarce capacity. IIE Transactions 31, 9 (1999), 835–849. 443

[9] Gérard P Cachon and Martin A Lariviere. 2001. Contracting to assure supply: How to share demand forecasts in a 444

supply chain. Management Science 47, 5 (2001), 629–646. 445

[10] Gérard P Cachon and Martin A Lariviere. 2005. Supply chain coordination with revenue-sharing contracts: Strengths 446

and limitations. Management Science 51, 1 (2005), 30–44. 447

[11] Gérard P Cachon and Christian Terwiesch. 2008. Matching Supply with Demand. McGraw-Hill. 448

[12] S Chopra and P Meindl. 2006. Supply chain performance: Achieving strategic fit and scope. Supply Chain Management: 449

Strategy, Planning, and Operations (2006), 22–42. 450

[13] Kathryn Cormican and Michael Cunningham. 2007. Supplier performance evaluation: Lessons from a large multina- 451

tional organisation. Journal of Manufacturing Technology Management 18, 4 (2007), 352–366. 452

[14] Süleyman Demirel, Roman Kapuscinski, and Man Yu. 2018. Strategic Behavior of Suppliers in the Face of Production 453

Disruptions. Management Science 64, 2 (Feb. 2018), 533–551. 454

[15] Sarang Deo and Charles J Corbett. 2009. Cournot competition under yield uncertainty: The case of the US influenza 455

vaccine market. Manufacturing & Service Operations Management (MSOM) 11, 4 (2009), 563–576. 456

[16] Matthew Elliott, Benjamin Golub, and Matthew V Leduc. 2020. Supply network formation and fragility. (2020). 457

Available at https://ssrn.com/abstract=3525459 or http://dx.doi.org/10.2139/ssrn.3525459. 458

[17] Yaner Fang and Biying Shou. 2015. Managing supply uncertainty under supply chain Cournot competition. European 459

Journal of Operational Research 243, 1 (2015), 156–176. 460

[18] Yigal Gerchak and Mahmut Parlar. 1990. Yield randomness, cost tradeoffs, and diversification in the EOQ model. Naval 461

Research Logistics (NRL) 37, 3 (1990), 341–354. 462

[19] Woonam Hwang, Nitin Bakshi, and Victor DeMiguel. 2015. Simple contracts for reliable supply. Working Paper (2015). 463

Available at http://faculty.london.edu/avmiguel/HBD-2015-09-02.pdf. 464

[20] Rachel E Kranton and Deborah F Minehart. 2000. Networks versus vertical integration. The RAND Journal of Economics 465

(2000), 570–601. 466

[21] Rachel E Kranton and Deborah F Minehart. 2001. A theory of buyer-seller networks. American Economic Review 91, 3 467

(2001), 485–508. 468

[22] N Gregory Mankiw and Michael D Whinston. 1986. Free entry and social inefficiency. The RAND Journal of Economics 469

(1986), 48–58. 470

[23] Ying Rong, Lawrence V Snyder, and Zuo-Jun Max Shen. 2017. Bullwhip and reverse bullwhip effects under the 471

rationing game. Naval Research Logistics (NRL) 64, 3 (2017), 203–216. 472

[24] Yossi Sheffi. 2005. The resilient enterprise: Overcoming vulnerability for competitive advantage. MIT Press Books 1, 473

0262693496 (Oct. 2005). 474

[25] Yossi Sheffi and James B Rice Jr. 2005. A supply chain view of the resilient enterprise. MIT Sloan Management Review 475

47, 1 (2005), 41. 476

[26] Sammi Yu Tang and Panos Kouvelis. 2011. Supplier diversification strategies in the presence of yield uncertainty and 477

buyer competition. Manufacturing & Service Operations Management (MSOM) 13, 4 (2011), 439–451. 478

[27] Candace Arai Yano and Hau L Lee. 1995. Lot sizing with random yields: A review. Operations Research 43, 2 (1995), 479

311–334. 480

https://dx.doi.org/10.1287/mnsc.2018.3217
http://faculty.london.edu/avmiguel/HBD-2015-09-02.pdf


Victor Amelkin and Rakesh Vohra 21

A PROOFS 481

Proof. Proof of Lemma 4.2:

E[𝑢𝑖 (𝑔,𝑤)]

= E


∑︁
𝑗∈𝑁 (𝑖 )

©­«
(
Δ −

∑︁
𝑘∈S+ (𝑔)

𝑆𝑘 −𝑤 𝑗

) 𝑆 𝑗

𝑑 ( 𝑗) − 𝑐
ª®¬
 =

∑︁
𝑗∈𝑁 (𝑖 )

(
(Δ −𝑤 𝑗 )

E[𝑆 𝑗 ]
𝑑 ( 𝑗) −

E
[
𝑆 𝑗

∑
𝑘∈S+ (𝑔)

𝑆𝑘

]
𝑑 ( 𝑗) − 𝑐

)
= (as 𝑆 𝑗 are i.i.d., 𝑗 ∈ S+ (𝑔), and Var[𝑆 𝑗 ] = E[𝑆2𝑗 ] − E2 [𝑆 𝑗 ])

=
∑︁
𝑗∈𝑁 (𝑖 )

©­­«
𝜇 (Δ −𝑤 𝑗 )
𝑑 ( 𝑗) −

∑
𝑘∈S+ (𝑔)

E[𝑆 𝑗 ] E[𝑆𝑘 ] + Var[𝑆 𝑗 ]

𝑑 ( 𝑗) − 𝑐
ª®®¬ =

∑︁
𝑗∈𝑁 (𝑖 )

(
𝜇 (Δ −𝑤 𝑗 )
𝑑 ( 𝑗) − 𝜇

2𝐾 + σ2

𝑑 ( 𝑗) − 𝑐
)

=
∑︁
𝑗∈𝑁 (𝑖 )

(
𝜇 (Δ − 𝜇𝐾) − σ2 − 𝜇𝑤 𝑗 )

𝑑 ( 𝑗) − 𝑐
)
=

∑︁
𝑗∈𝑁 (𝑖 )

(
𝑣 (𝐾) − 𝜇𝑤 𝑗

𝑑 ( 𝑗) − 𝑐
)
,

where 𝐾 = 𝐾 (𝑔) = |S+ (𝑔) | is the number of active suppliers in 𝑔. 482

Proof. Proof of Theorem 4.8: From Theorem 4.7, we know that the 𝐾 cheapest suppliers are

active at an equilibrium. For active supplier 𝑗 from that supplier set, the marginal benefit of linking

to it (by a vacant retailer whose number is sufficiently large) should be non-negative

𝑣 (𝐾) − 𝜇𝑤 𝑗

𝑑 ( 𝑗) − 𝑐 ≥ 0;

and the marginal benefit of creating an extra link to it (by any retailer) should be negative

𝑣 (𝐾) − 𝜇𝑤 𝑗

𝑑 ( 𝑗) + 1 − 𝑐 < 0.

Combining the two obtained inequalities, we get 𝑑 ( 𝑗) =
⌊
𝑣 (𝐾 )−𝜇𝑤𝑗

𝑐

⌋
. 483



Victor Amelkin and Rakesh Vohra 22

B KEY METRICS OF FORMED SUPPLY CHAINS 484

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

90

(a) 𝐾∗ vs. 𝜇

0 1 2 3 4 5 6

5

10

15

20

25

30

35

40

(b) 𝑑 ( 𝑗) vs. 𝜇
0 2 4 6 8 10

1

2

3

4

5

6

7

8

(c) 𝑑 ( 𝑗) vs. σ2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

20

40

60

80

100

120

(d) 𝐾𝑜𝑝𝑡 vs. 𝜇

0.5 1 1.5 2 2.5 3 3.5 4 4.5

20

40

60

80

100

120

140

160

(e) E 𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒∗ vs. 𝜇

0 5 10 15 20

40

50

60

70

80

90

100

110

120

130

140

(f) E 𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒∗ vs. σ2

1 2 3 4 5 6
80

90

100

110

120

130

140

150

160

170

(g) E 𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒𝑜𝑝𝑡 vs. 𝜇

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) 𝑃𝑜𝑆 vs. 𝜇

0 5 10 15 20 25 30

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i) 𝑃𝑜𝑆 vs. σ2

10 20 30 40 50 60

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(j) 𝑃𝑜𝑆 vs.𝑚

Fig. 3. Dependence on supplier degree𝑑 ( 𝑗), number of active suppliers𝐾 , expected social welfareE[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒],
and the price of stability (PoS) E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒∗] / E[𝑊𝑒𝑙 𝑓 𝑎𝑟𝑒𝑜𝑝𝑡 ] at an equilibrium (∗) and for the central planner
(𝑜𝑝𝑡 ) on supply mean 𝜇, variance σ2, and the number of suppliers𝑚.
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